THE VDOT STARS PROGRAM

AN OVERVIEW FOR DESIGNERS

Integrating Transportation Planning, Project Development, and Project Programming

STRATEGICALLY TARGETED AND AFFORDABLE ROADWAY SOLUTIONS

March 21, 2017

AGENDA

- Program Overview
- Project Development
- Project Types and Deliverables
- Project Examples
- Questions

THE VDOT STARS PROGRAM

Program Overview

WHAT IS THE STARS PROGRAM?

Program to develop solutions to reduce crashes and congestion bottlenecks using a data-driven approach

Crash hotspots Speed data AADT data Use this information together to identify corridors with safety and congestion challenges

Overall goal of STARS is to develop solutions that can be programmed in the VDOT Six-Year Improvement Program (SYIP)

VDOT BUSINESS PLAN

STARS Program

- Performance measure: Maximize the programming and construction of STARS Program recommendations
- Goal: Continue advancing 50% or more of the STARS recommendations as projects in the SYIP

PUBLIC SAFETY

Identify opportunities early in the planning process to reduce fatal and serious injury crashes that occur on Virginia's highways.

ACTION ITEMS

1.3.1 Maximize the programming and construction of Strategically

Targeted Affordable Roadway Solutions (STARS) program recommendations to address safety and congestion challenges on high fatality and serious injury incident corridors and intersections, based on available funding.

THE STARS TEAM

PARSONS BRINCKERHOF

VDOT Districts and Residencies

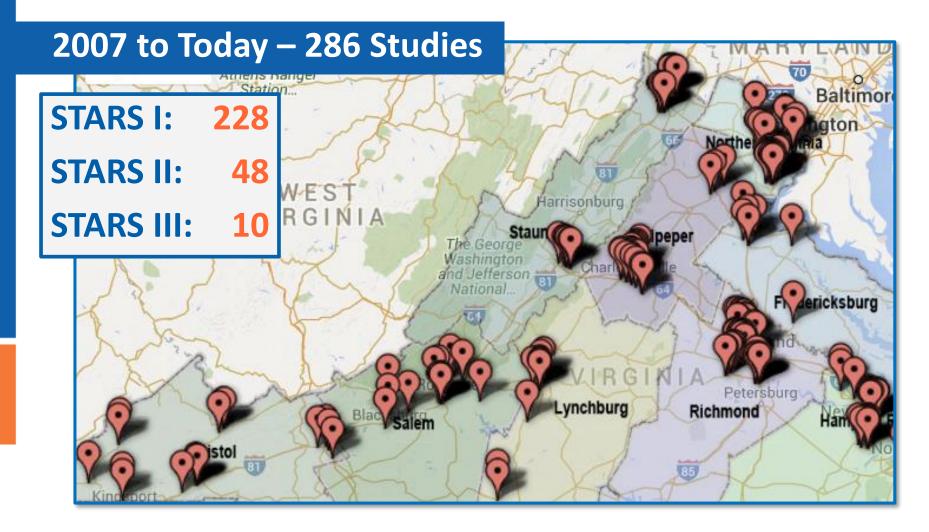
- Coordinate with localities, MPOs, and PDCs
- Submit STARS applications
- Lead STARS projects
- Coordinate with consultant team

VDOT Central Office

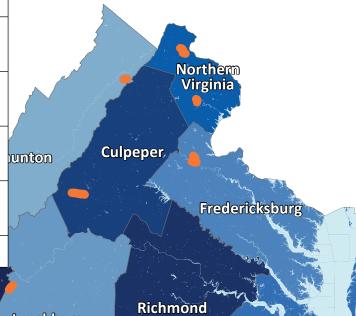
 Provides program oversight, data analysis, and application review

Consultants

Provide project support


STARS BRIDGING THE GAP

- Planning linked to operations/ITS, safety and design
- Localities engaged early in the planning process
- Project risks identified
- Readiness improved for project implementation


STARS PROJECTS

2016 STARS PROJECTS

District	Route	Jurisdiction
Bristol	US 460	Tazewell County
Culpeper	US 250	Albemarle County
Fredericksburg	Route 3	City of Fredericksburg
Fredericksburg	Route 17	Stafford County
Hampton Roads	Route 258	City of Hampton
Lynchburg	US 460 Bus.	City of Lynchburg / Campbell County
Northern Virginia	Route 4361	City of Manassas / Prince William County
Northern Virginia	Route 7	Loudoun County / Town of Leesburg
Staunton	Route 55	Warren County

Bristol

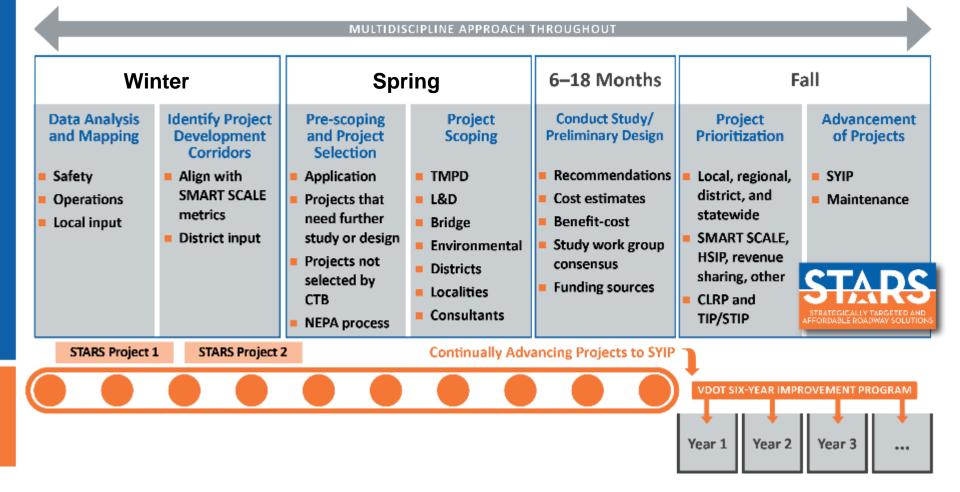
Salem

Lynchburg

Hampton Roads

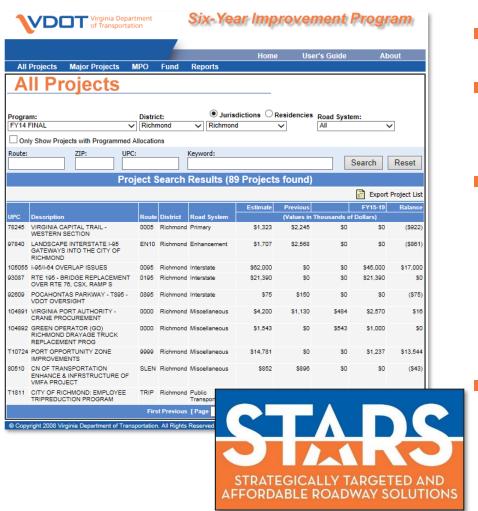
PROGRAM WEBSITE

http://www.virginiadot.org/projects/stars.asp

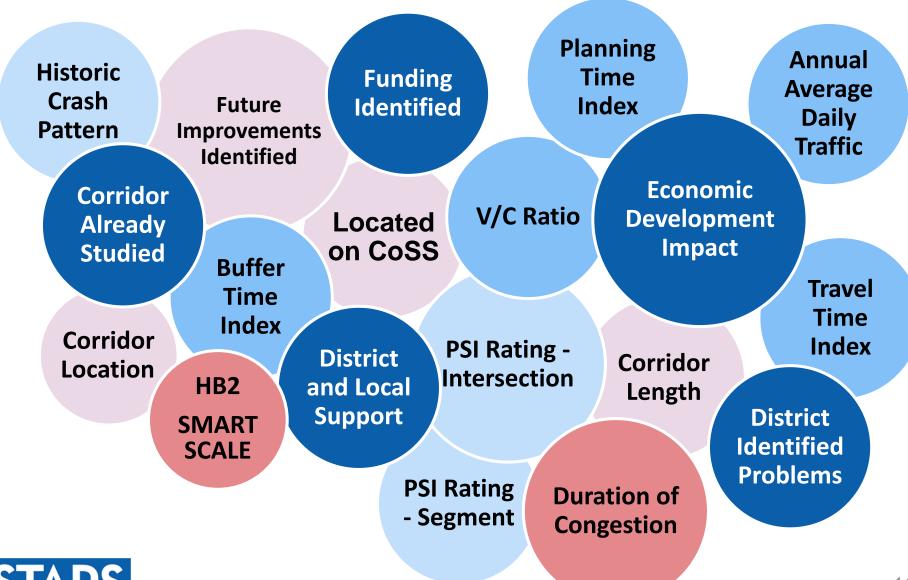


THE VDOT STARS PROGRAM

Project Development

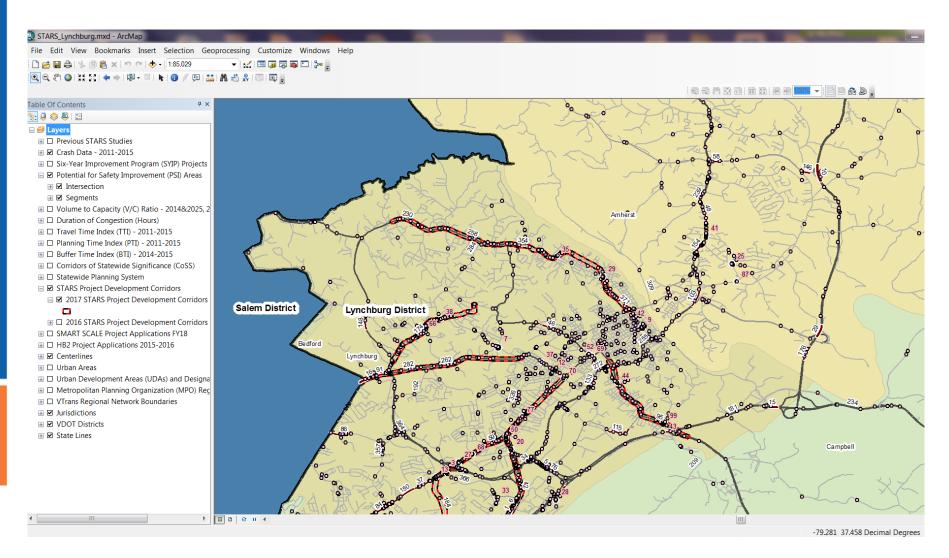


STARS PROJECT DEVELOPMENT CYCLE


WHY IS STARS IMPORTANT TO PROJECT DELIVERY?

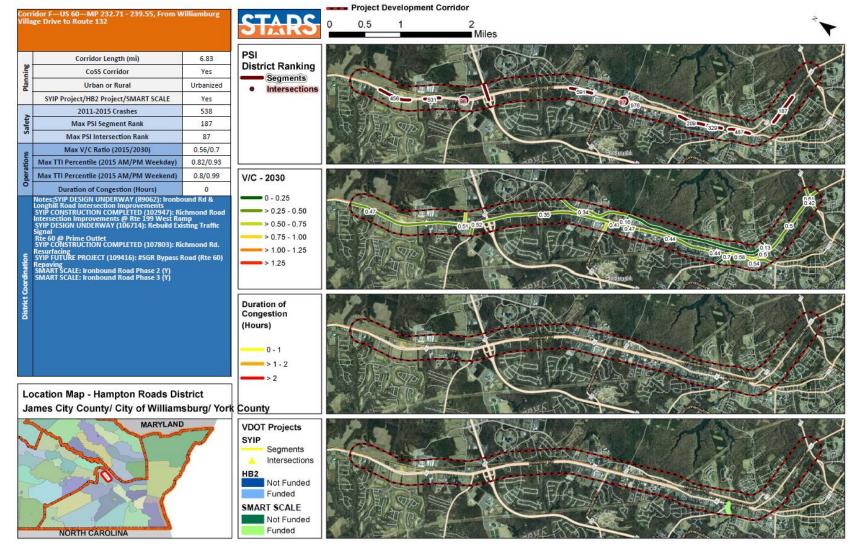
- Data driven process
- Prepares a source of current data
- Develops solutions that can be funded in the SYIP
 - SMART SCALE, HSIP, CMAQ, RSTP, Revenue Sharing
 - Improves accuracy of cost estimates and schedules

WHAT DATA IS USED?



CORRIDOR SELECTION CRITERIA

Category	Indicator	Measure	Criteria
	Corridor Length	Yes/No	0.5 - 10 miles
	Located on CoSS	Yes/No	
Planning	Area Type	Urbanized / Urban Cluster / Rural	
Designations		Yes/No	SYIP Project
	Future Improvements Identified	Yes/No	In Long Range Transportation Plan
	ruture improvements identined	Yes/No	In State Highway Plan
		Yes/No	NEPA Study
	Historic Crash Pattern		Approximate number of crashes
Safety	PSI Rating - Segment	Rank	1 - Highest ranking
F	PSI Rating - Intersection	Rank	1 - Highest ranking
	Annual Average Daily Traffic		Average along the corridor
	V/C Ratio	Ratio	Highest ratio
Operations	Travel Time Index	Percentiles	Highest percentile for corridor
	Planning Time Index	Percentiles	Highest percentile for corridor
	Buffer Time Index	Percentiles	Highest percentile for corridor
	Corridor Already Studied	Yes/No	What type of study conducted
	District Identified Problems	Yes/No	Description of problems/concerns
District	District Administration Support	Yes/No	
Coordination	Local / MPO Support	Yes/No	
	Funding Identified	Yes/No	Source(s)
	Economic Development Impact	Yes/No	Supporting details needed



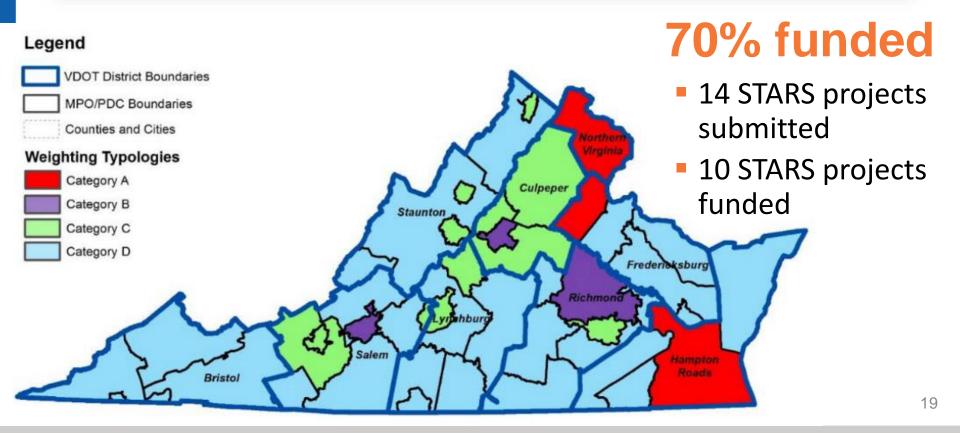
PROJECT GIS DATA — ARCMAP MAPPAKS

LYNCHBURG DISTRICT PROJECT DEVELOPMENT CORRIDOR A (US 60)

STARS REVIEW AND SELECTION COMMITTEES

STARS Review Committee

- Purpose: Review applications for consistency and accuracy and verify that the STARS program intent is met
- Participation: Central Office, Districts, and Consultants


STARS Selection Committee

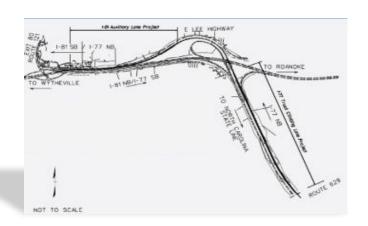
- Purpose: Prioritize applications for funding and consider statewide resource allocations and needs
- Participation: Central Office, Districts, and Virginia Transportation Research Council

IMPORTANCE OF CORRIDOR IDENTIFICATION

Factor	Congestion Mitigation	Economic Development	Accessibility	Safety	Environmental Quality	Land Use
Category A	45%	5%	15%	5%	10%	20%
Category B	15%	20%	25%	20%	10%	10%
Category C	15%	25%	25%	25%	10%	-
Category D	10%	35%	15%	30%	10%	-

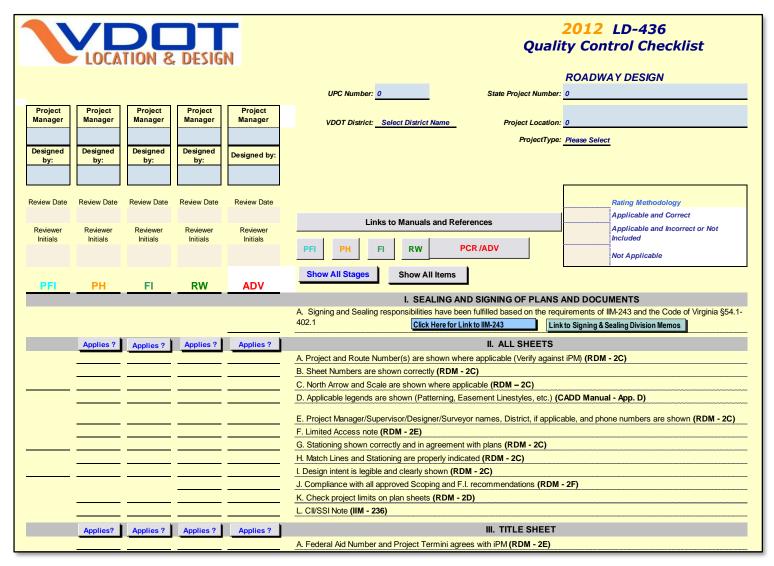
THE VDOT STARS PROGRAM

Project Types and Deliverables

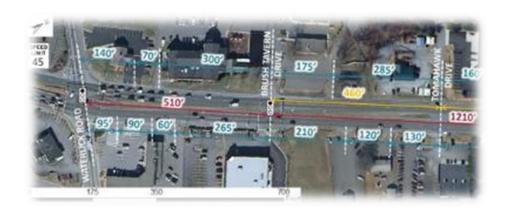

STARS PROJECT TYPES

Preliminary Design

- Roadway survey and design
- Subsurface utility investigations
- Drainage design
- Environmental investigation
- Phase 1 structural design

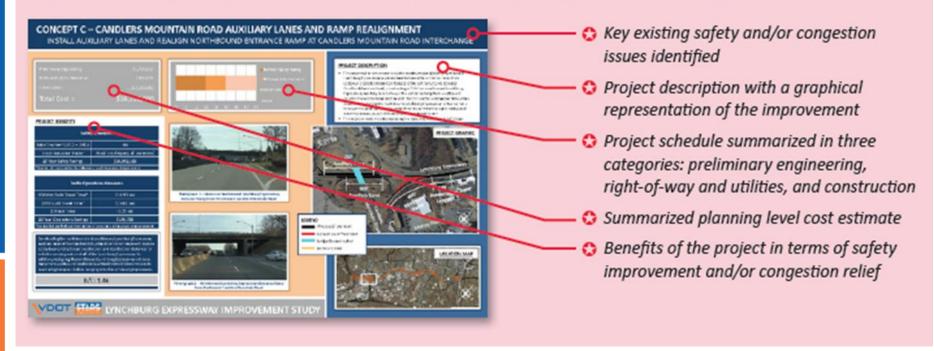

Corridor Studies

- Access management
- Roadway safety assessment
- Congestion management
- Alternatives analysis

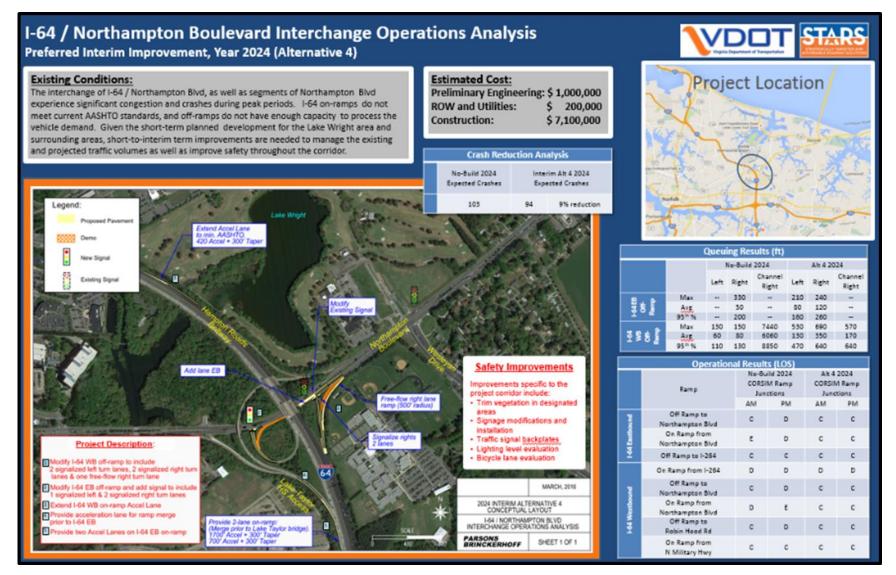

STARS DESIGN SCOPING USING MODIFIED LD-436

PROJECT SCOPES AND DELIVERABLES

- Data collection
- Traffic analysis
- Safety analysis
- Cost estimates (PCES)
- Schedule
- Conceptual design (varies up to 30%)
- Phasing and funding recommendations
- Study Work Group meetings (and Citizen information)
- Report
- Project summary



STARS PROJECT SUMMARY SHEET


STARS Project Summary Sheets

The STARS one-page project summary sheets have proven to be an effective tool for summarizing several important project features, especially those factors that are required in many of the potential funding applications.

STARS PROJECT SUMMARY

THE VDOT STARS PROGRAM

Project Examples

HB2

- Franklin Street interchange (Exit 74) ramp improvement
- Belvidere Street interchange (Exit 76) safety improvement
- Belvidere Street interchange (Exit 76) acceleration lane
- Hermitage Street interchange (Exit 78) deceleration lane
- Laburnum Avenue interchange (Exit 186) ramp improvement
- Corridor-wide overhead sign upgrades

SMART SCALE

- Corridor-wide lighting
- Emergency pull-offs (5)
- Northbound I-95 lane shift
- Southbound I-95 lane shift
- Ramp Improvements in the City of Richmond (5 roundabouts)

I-195/Laburnum Interchange - Roundabout

ESTIMATED PROJECT COSTS

Preliminary Engineering	\$440,000
ROW and Utility Relocation	\$0
Construction	\$1,770,000
Total Cost =	\$2,210,000

ESTIMATED BENEFITS

Traffic Operations Measures*	AM and PM Peak Hour Intersection Delay* (Seconds)
2022 No-Build	22.2
2022 Build	16.8
Reduction in Delay	5.4
Annual Cost Savings	\$15,000
Benefit-to-Cost Ratio	0.07

*Results reported for both intersections; NB and SB Exit Ramps at Laburnum

	Maximum Queue Length (Feet)		
	SB Exit Ramp	NB Exit Ramp	
2022 No-Build	AM = 422, PM = 738	AM = 63, PM = 246	
2022 Build	AM = 278, PM = 466	AM = 18, PM = 0	
Safety Measure	# of Related Crashes		
Between 2007 - 2009	4		
Crash Reduction Factor	0.72		
Reduction in Crashes	3		

EXISTING CONDITIONS

The existing I-195 off-ramps to Laburnum experience queuing during the peak hours, as noted in the table above.

PROJECT BENEFIT

This project proposes to reduce queuing on the northbound and southbound I-195 exit ramps during the peak hours as well as improve the overall safety of the intersections.

PROJECT PHOTOS

Photograph 1 – I-195 SB Exit Ramp to Laburnum – Proposed Roundabout Location

Photograph 2 – Looking East from I-195 Exit Ramp – Sight Distance Impacted by Vegetation

Photograph 3 – I-195 NB Exit Ramp to Laburnum Ave Proposed Free-Flow Right-Turn Lane

PROJECT GRAPHIC

ANTICIPATED SCHEDULE

PROJECT DESCRIPTION

SB I-195 Off-Ramp at Laburnum Avenue – construct a one-lane roundabout to accommodate the heavy conflicting SB left turns (AM = 309, PM = 398) and WB left turns (AM = 281, PM = 323). This improvement will require a lane drop of the rightmost WB through lane prior to the roundabout, which can be done using signing and pavement markings.

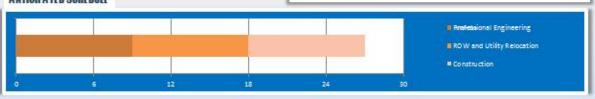
NB I-195 Off-Ramp at Labumum Avenue – drop the rightmost EB through lane using signing and pavement markings just west of the off-ramp. Convert the NB right-turn movement (AM = 390, PM = 378) to free flow by using the rightmost EB through lane. This improvement can be accomplished using existing pavement since there are minimal NB left turns (AM = 24, PM = 4) and NB throughs (AM = 19, PM = 0) requiring minimal storage. A short left-turn lane, approximately 50 to 100 feet, and an exclusive right-turn lane can be striped out using the existing pavement. This option will require the restriction of EB left turns and SB left turns to/from the office park on the north side of Laburnum, which could be enforced with some minor median improvements.

I-95/I-64 Corridor - Emergency Pull-Offs

ESTIMATED PROJECT COSTS

Proposed Location	Preliminary Engineering	ROW and Utility Relocation	Construction	Total
Bryan Park Interchange - NB Direction	\$390,000	\$95,000	\$1,560,000	\$2,045,000
Bryan Park Interchange – SB Direction	\$390,000	\$95,000	\$1,560,000	\$2,045,000
Just south of Boulevard – NB Direction	\$390,000	\$100,000	\$1,560,000	\$2,050,000
Just north of Belvidere – NB Direction	\$155,000	=	\$1,560,000	\$1,715,000
Just north of Belvidere – SB Direction	\$155,000	=	\$1,560,000	\$1,715,000
Total Cost =	\$1,480,000	\$290,000	\$7,800,000	\$9,570,000

EXISTING CONDITIONS

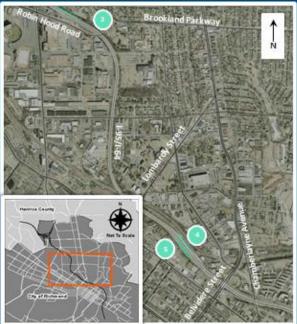

- The I-95/I-64 study corridor has minimal left and right shoulders; some sections have no shoulders
- There are no designated emergency pull off areas within the study corridor

PROJECT DESCRIPTION

Create emergency pull-off areas throughout the I-95/I-64 overlap section.

Frequently-spaced pull-off areas increase the likelihood that they will be used; therefore, proposed locations were considered throughout the study corridor. Selected locations were primarily determined based on available right-of-way and constructability.

ANTICIPATED SCHEDULE



PROJECT RENEFITS

Improve incident management and safety throughout the corridor.

- Allows motorists experiencing problems to exit the roadway without blocking through traffic. Reduces the duration of traffic congestion and related crashes that occur due to a disabled vehicle.
- Provides a designated area for crash clearing and/or investigation. When crashes occur, vehicles need to be cleared to the shoulder quickly in order to minimize the amount of upstream traffic congestion. Additionally, a pulloff area may provide emergency response vehicles with adequate space to aid victims after a crash without taking up a traffic lane.
- Provides areas for law enforcement officers to apprehend non-compliant motorists.
- Provide area for law enforcement officers and incident management personnel to respond to a crash that has been moved out of the travel lanes.

Overhead Guide Signs with Option Lane Issue

ESTIMATED PROJECT COSTS

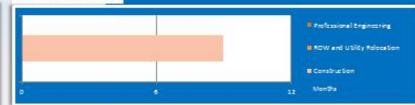
Proposed Location	Preliminary Engineering	ROW and Utility Relocation	Construction	Total
NB 1-95 to WB 1-64/SB 1-195	\$52,000	-	\$258,000	\$310,000
SB I-95 to WB I-64	8			22
SB 1-95 to EB 1-64	\$52,000	14	\$258,000	\$310,000
EB I-64 to NB I-/95/SB I-195	\$52,000	32	\$258,000	\$310,000
WB I-64 to NB I-95/SB I-95	\$52,000	18	\$258,000	\$310,000
Total Cost =	\$208,000	\$0	\$1,032,000	\$1,240,000

* Cost for this guide sign was not included because it will be replaced as part of a statewide directive to remove all signing from bridge structures.

EXISTING CONDITIONS

- There are 5 guide signs with option lanes located within the study corridor. An option lane is defined as a lane from which both the exit destination and the mainline destination can be reached.
- Existing signing creates expectancy problems for drivers who are unfamiliar with the area.
- The existing guide signs with option lanes issue do not meet current standards and should be upgraded to meet the Manual on Uniform Traffic Control Devices (MUTCD) Overhead Arrow-per-Lane standard.

PROJECT PHOTOS



Photograph 1: SB I-95 to EB I-64

Photograph 2: NB I-95 to WB I-64/5B I-195

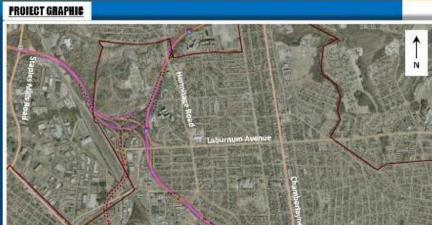
ANTICIPATED SCHEDULE

PROJECT BENEFIT

 Guide signs with lane use arrows shown for each lane will provide a clearer message to motorists as to downstream geometry; thereby, improving safety throughout the corridor.

Photograph 3: WB I-64 to NB I-95/SB I-95

Photograph 4: EB I-64 to NB I-95/SB I-195


Photograph 5: SB I-95 to WB I-64

PROJECT DESCRIPTION

- Upgrade the 5 non-standard guide signs with option lane issues to meet the MUTCD Overhead Arrow-per-Lane standard.
- In addition to new guide signs new sign assemblies are assumed including overhead sign bridges, foundations, and sign lighting.

I-95/I-64 Corridor — Continuous Roadway Lighting

PM Peak 40

AM Peak 45

I-64 / I-195 Ramp 2-Lane

AM Peak 42 43

Exit 79

Exist, Prop.

PM Peak 36

AM Peak 40 57

From

From 195

ESTIMATED PROJECT COSTS

\$3,110,000
50
\$12,450,000
\$15,560,000

ESTIMATED BENEFITS

Safety Measure	# of Related Crashes^	
Between 2007 - 2009	362	
Crash Reduction Factor	0.50	
Reduction in Crashes	181	

EXISTING CONDITIONS

- Both high mast and conventional roadway lighting exist along the I-95/I-64 study
- Existing lighting is primarily concentrated around interchanges

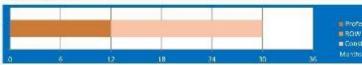
PROJECT DESCRIPTION

Remove existing corridor lighting and upgradeto continuous corridor wide high most lighting.

PROIECT BENEFIT

Improve safety throughout the corridor by reducing night crashes.

PROJECT PHOTOS



Photograph 1: 58 I-95/EB I-64 East Interchange -High Mast Roadway Lighting

Photograph 2: I-64 West of Bryan Park Interchange -Conventional Roadway Lighting

PROJECT BENEFIT

- Professional Engineering

Southbound I-95 Exit Ramp at Franklin Street/15th Street (Exit 74B)

ESTIMATED PROJECT COSTS

Preliminary Engineering	\$240,000
ROW and Utility Relocation	\$290,000
Construction	\$1,275,000
Total Cost =	\$1.805.000

ESTIMATED BENEFITS

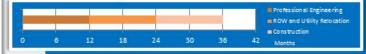
Traffic Operations Measures	AM and PM Peak Hour Intersection Delay (Seconds)
2022 No-Build	130.8
2022 Build	50.5
Reduction in Delay	80.3
Annual Cost Savings	\$166,000
Benefit-to-Cost Ratio	0.73
	Maximum Queue Length (Feet)
	SB I-95 Exit Ramp
2022 No-Build	AM = 1,489, PM = 127
2022 Build	AM = 277, PM = 40
Safety Measure	No. of Related Crashes
Between 2007 - 2009	4
Crash Reduction Factor	0.35
Reduction in Crashes	1

EXISTING CONDITIONS

- Queuing from the existing southbound I-95 off-ramp to Franklin Street occurs on a daily basis especially during the AM peak hour, as shown in Photograph 2.
- Vehicles spill back onto mainline I-95 due to the 380 foot ramp length and are a safety issue due to the high-speed differential between the exit and mainline traffic.
- Geometric conditions of the ramp such as the change in grade provide poor intersection visibility to exiting drivers, as shown in Photograph 1.
- Vehicles on Franklin Street were observed during the AM peak hour stopping to drop off passengers to the Monroe Building located on the northwest quadrant of the intersection. This negatively impacted westbound thru traffic on Franklin contributing to the queuing issue on the

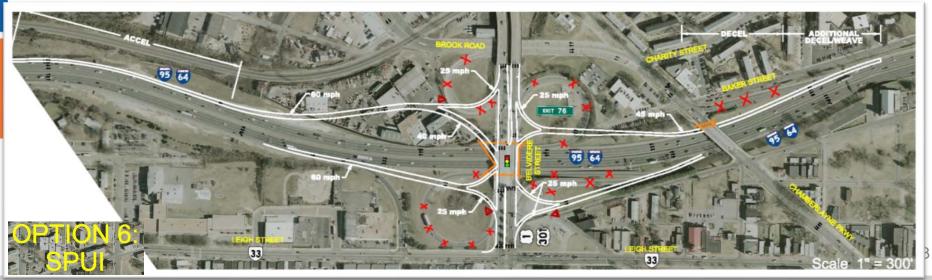
PROJECT PHOTOS

Photograph 1 – SB I-95 Exit Ramp to Franklin Street/15⁶ Street


Photograph 2 – SB I-95 Exit Ramp to Franklin Street/15th Street

Photograph 3 – Looking North at SB I-95 Exit Ramp to Franklin Street/15th Street

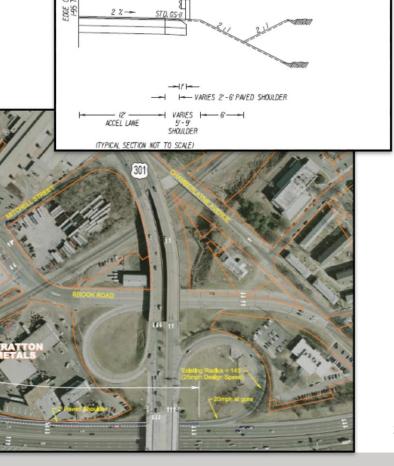
ANTIGIPATED SCHEDULI


PROJECT DESCRIPTION

- Widen the southbound approach from 2 lanes to 3 lanes. The additional lane will allow for more efficient signal timing operations and provide more storage for queued vehicles.
- Install ramp pre-emption at the intersection. Once the SB queue reaches a specific
 point (e.g., 250 ft. from stop bar) then the intersection controller can prioritize
 demand from the ramp and clear the queue before it spills back onto I-95.
- Install actuated pedestrian push buttons on each signal pole on each quadrant of the intersection.
- * The NB approach of 15° street will be restriped from 2 NB lanes and 2 SB lanes to 3 SB lanes and 1 NB lane as shown in the project graphic above under a separate City of Richmond project.

PROJECT RENEFIT

This project proposes to reduce peak hour queuing on the southbound I-95 exit ramp, improve traffic flow on Franklin Street, and ultimately improve the overall safety and operation of the study area.

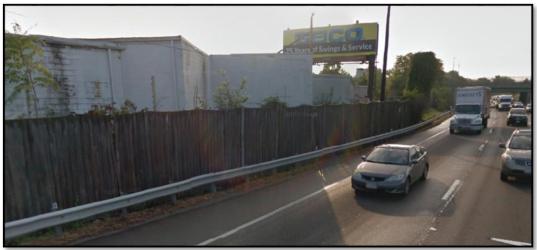

Acceleration lane extension

2,300' full width

300' taper

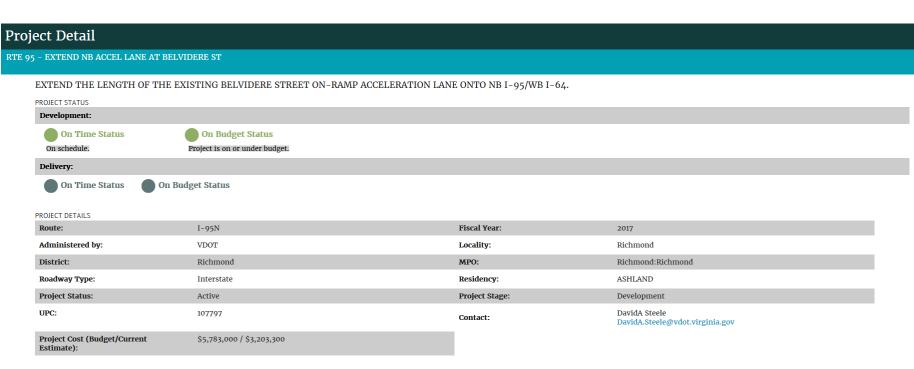
Shoulder width waiver (2')

Long-term alternatives


TYPICAL SECTION

- Acceleration lane extension
- Appraisal for Stratton Metals (metal recycling facility)

Partial: \$1.5M


• Full: \$3.5M

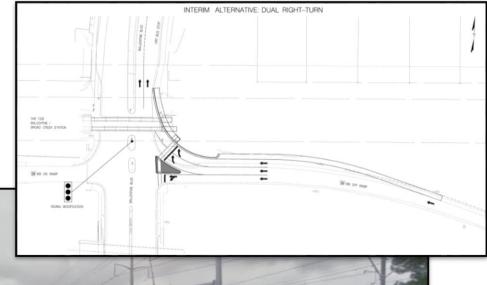
- SMART SCALE Dashboard
- Cost: \$5.8 M
- Schedule: PH: 5/19/17 and Advertisement: 8/24/20

MOUNT CROSS RD AT STONY MILL RD/TUNSTALL HIGH RD INTERSECTION IMPROVEMENT: PITTSYLVANIA COUNTY

- Intersection alternatives
- Existing conditions
 - Sight distance
 - Access management
 - High school buses
 - Crash location

MOUNT CROSS RD AT STONY MILL RD/TUNSTALL HIGH RD INTERSECTION IMPROVEMENT: PITTSYLVANIA COUNTY

• Intersection alternatives: turn lanes vs. roundabout

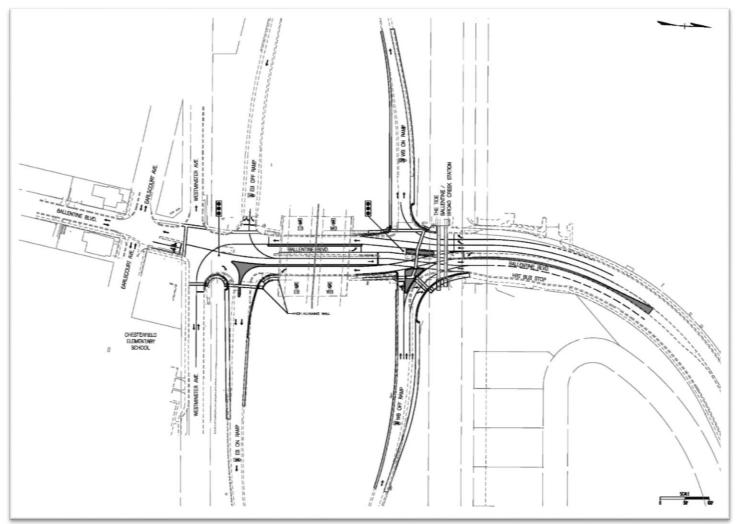

I-264 AT BALLENTINE BOULEVARD (EXIT 12) INTERCHANGE IMPROVEMENT: CITY OF NORFOLK

Congestion hotspot

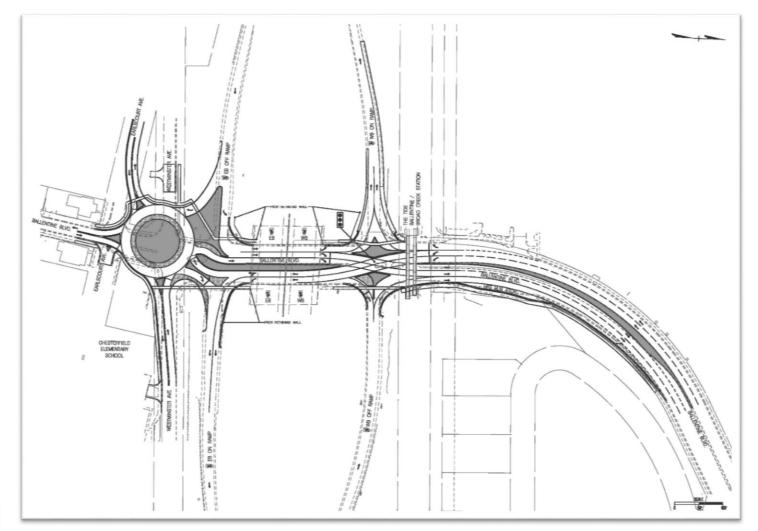
Phased improvements

Dual right-turn lanes

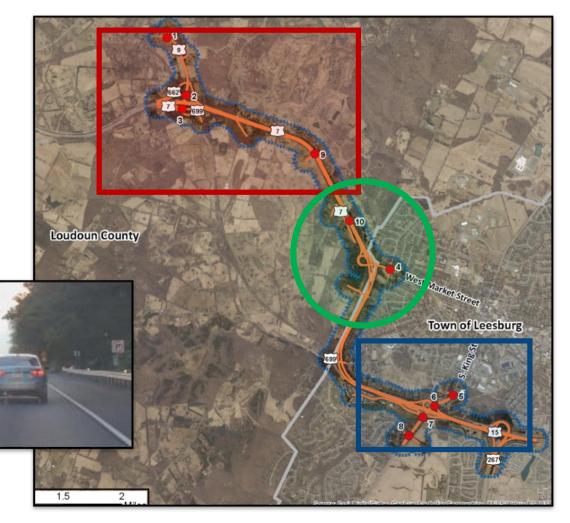
SMART SCALE application: \$1.7M



I-264 AT BALLENTINE BOULEVARD (EXIT 12) INTERCHANGE IMPROVEMENT: CITY OF NORFOLK


Long-Term Alternative - Displaced Left, \$5.8M

I-264 AT BALLENTINE BOULEVARD (EXIT 12) INTERCHANGE IMPROVEMENT: CITY OF NORFOLK

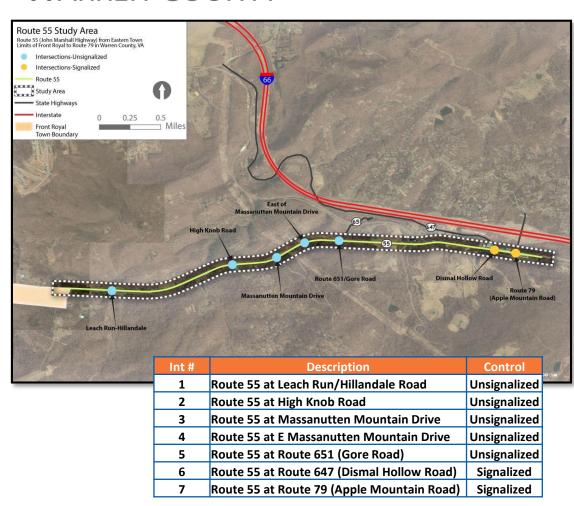

Long-Term Alternatives - Modified DDI, \$9.6M

ROUTE 7 CORRIDOR LOUDOUN COUNTY AND TOWN OF LEESBURG

- 5.7-mile corridor
- 10 study area intersections
- 3 distinct study areas

ROUTE 7 CORRIDOR IMPROVEMENT STUDY LOUDOUN COUNTY AND TOWN OF LEESBURG

 Alternatives at Route 9 interchange Hybrid Roundabout **Bypass** Lane


ROUTE 7 CORRIDOR IMPROVEMENT STUDY LOUDOUN COUNTY AND TOWN OF LEESBURG

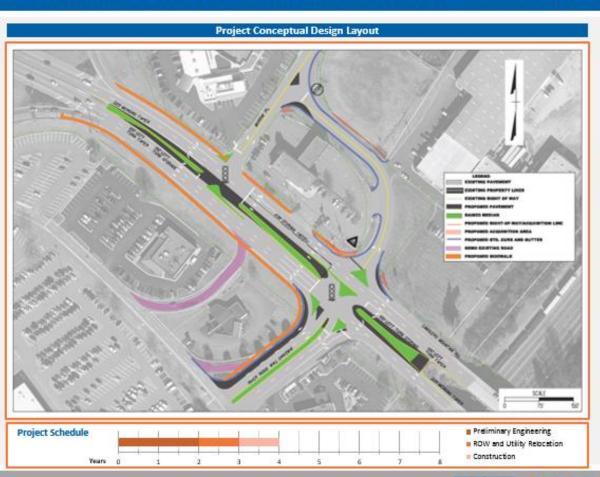
 Alternatives between Route 267 and S. King Street interchanges

ROUTE 55 WARREN COUNTY

- 2.95-mile corridor: Front Royal to Route 79 (Apple Mtn Rd)
- 7 study intersections
- Spot locations with congestion concerns

ROUTE 55 WARREN COUNTY

- Roadway Characteristics
- Design speed and Typical Section
- Shoulder Curb and Gutter
- Pavement Cross Slope
- Bridge Width
- Vertical Clearance
- Design Vehicle WB-67
- Traffic Data
- Horizontal Alignment, Superelevation and Curve Transitions
- Vertical Alignment and Stopping Sight Distance
- Bicycle and Pedestrian Accommodations



CANDLERS MOUNTAIN ROAD LYNCHBURG

PROJECT 3

MURRAY PLACE AND RIVER RIDGE MALL CONTINUOUS GREEN T INTERSECTION IMPROVEMENTS

Project Description

This project improves operations on Candlers Mountain Road in the vicinity of the Murray Place and River Ridge Mall intersections by eliminating signal phases and providing additional green time for vehicles.

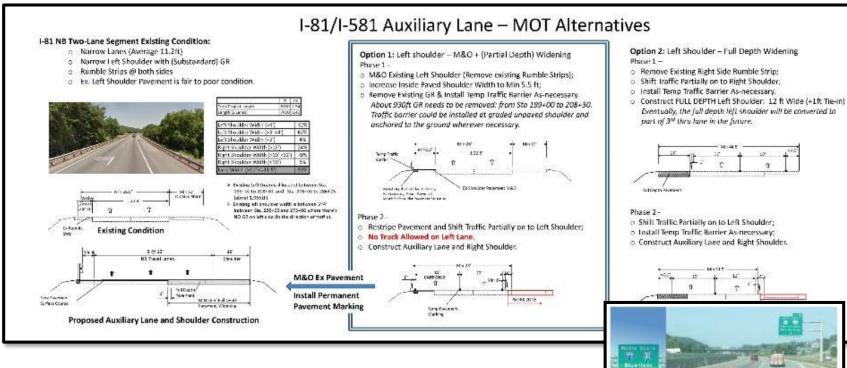
- Construct a signalized continuous Green-T at Murray Place (west) intersection with a free-flow eastbound through movement
- Construct a signalized continuous Green-T at Murray Place/River Ridge Mall intersection with a free-flow westbound through movement
- Construct dual westbound left-turn lanes at Murray Place/River Ridge Mall intersection and add a third receiving lane to the mail entrance
- . Close free-flow right entrance ramp to River Ridge Mall
- Construct sidewelk on both sides of Candlers Mountain Road between the Lynchburg Expressway and Murray Place/River Ridge Mail intersection.

Planning Level Cost Estimate

62000 C	SYIP Cycle		
Phase	Estimate		
Preliminary Engineering	\$1,000,000		
ROW and Utility Relocation	\$980,000		
Construction	\$4,250,000		
Total Cost =	\$6,230,000		

Traffic Operations Benefits

	AM	PM
Candlers Mountain Road at Murray	Place (west interse	ction)
2040 No Build Intersection Delay	- 11	1001
2040 Build Intersection Delay	4.2 sec/veh	38.2 sec/veh
Δ Intersection Delay		
Candlers Mountain Road at Murray	Place/River Ridge I	llaN
2040 No Build Intersection Delay	61.8 sec/veh	126.2 sec/veh
2040 Build Intersection Delay	13.4 sec/veh	32.5 sec/veh
Δ Intersection Delay	-48.4 sec/veh	-93.7 sec/veh


Safety Benefits

Improvement	Crash Reduction Factor	Total Applicable Crashes	Reduction	Adjusted Crashes
Convert four-leg intersection into two three-leg intersections	57	101	57.6	43.4
install left-turn lane	25	7	1.8	5.2

STARS

NORTHBOUND I-81 AUXILIARY LANE (EXIT 141 TO EXIT 143) MP 141 TO MP 143: ROANOKE COUNTY

- Noise walls impact drainage design
- Flood plain
- Cost: \$29.8 M
- Schedule: PH: 7/18 and Advert.: 12/20

I-64 / US 13 (NORTHAMPTON BLVD)

- 2-mile corridor: Military Hwy to Baker Rd
- Safety concerns and congestion bottlenecks
- Major development activities
- Cost: \$9.3 M
- Schedule: PH: 12/16/16 and Advertisement: 3/18/17

US 258 (MERCURY BLVD) CITY OF HAMPTON

- 0.7-mile corridor:Aberdeen Rd to I-64
- 6 study intersections

Spot safety and congestion with pedestrian improvements through interchange

QUESTIONS?

Samuel W. Hayes, PE

Transportation and Mobility Planning Division

(804) 586-2718 – office

(804) 896-3762 – mobile

Samuel.Hayes@VDOT.Virginia.gov

